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Abstract. A wavefunction possessing the correct asymptotic behaviour in the region of
configuration space where two particles are only slightly separated and a third particle is located far
away is constructed within the quasiclassical eikonal, WKB and quantum-mechanical approach.
This function cannot be represented as a product of independent two-particle distortion functions
and in the limiting cases it passes into the continuum-distorted-wave (CDW) function and the
asymptotic state of Kunikeev and Senashenko (1996Sov. Phys.–JETP82839). The derived function
gives a better account of the interaction zone and is used to investigate a fragmentation process.
As an application, the ionization process of an atom by ion impact is considered. The amplitude
and the double-differential cross section (DDCS) for the ionization process are developed. The
problem to calculate the DDCS is reduced to a three-dimensional integration.

1. Introduction

The description of the complicated quantum-mechanical dynamics of few charged particles
is one of the fundamental unsolved problems in atomic, molecular and nuclear physics. For
example, an adequate description of resonant or direct fragmentation processes involving
charged particles requires the knowledge of the final many-body scattering state both at finite
and infinite interparticle distances. However, our knowledge of the fragmentation dynamics
at finite interparticle distances is still scarce, in particular, if the strength of the different
interactions involved is of the same order and a perturbative approach is inappropriate.
Moreover, the behaviour in the inner or reaction zone,�int , where all particles are nearby,
depends on the asymptotic behaviour of the continuum state.

Asymptotic Coulombic states for the three-body scattering problem have been reported
in the region�0 where all interparticle distances are large (Rosenberg 1973, Peterkop 1977,
Merkuriev 1977, Belkíc 1978, Brauneret al 1989). In this region particles can be regarded as
almost independent ones so that the wavefunction can be represented in factorized form as the
product of Coulomb two-particle distortion factors. On the contrary, in the asymptotic region
�ij where two particles(i, j) are close to one another and a third particle(k) is located far
away from the pair(i 6= j 6= k 6= i = 1, 2, 3) this wavefunction has the wrong asymptotic
behaviour. Only recently (Alt and Mukhamedzhanov 1992, 1993, Kunikeev and Senashenko
(KS) 1996, Mukhamedzhanov and Lieber 1996, Kunikeev 1997, Kim and Zubarev 1997) have
asymptotic three-body scattering states been derived in the asymptotic regions�ij . Thus, Alt
and Mukhamedzhanov (1992, 1993) have obtained a zeroth-order wavefunction satisfying the
Schr̈odinger equation in�ij up to terms of O(1/R2

k )whereRk is the distance between particle
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k and the centre-of-mass of pair(i, j). Later, the asymptotic wavefunction in�ij that satisfies
the Schr̈odinger equation up to terms of O(1/R2

k ) and contains the zeroth-order term and all
of the first-order O(1/Rk) terms, was suggested in Kunikeev and Senashenko (1996). Similar
results were also obtained by Mukhamedzhanov and Lieber (1996) and further developed by
Kim and Zubarev (1997).

In this work we derive approximate analytical expressions for the solution of the non-
relativistic Schr̈odinger equation of three charged particles that generalize the KS asymptotic
states. The study is restricted to a description of a light particle moving in the field of two
heavy particles. This enables us to separate out the interaction between heavy particles into
an individual factor with good accuracy. The derived wavefunction gives a better account of
the reaction zone and may be used in describing the ionization process. As an application,
we develop the amplitude and the double-differential cross section (DDCS) for the direct
ionization of an atom by ion impact. The atomic system of units is used throughout.

2. The three-body Coulomb continuum state

We consider the system of three charged particles: the ejected electron (particle 2) moving in
the combined field of the scattered ion (1) and the residual target ion (3). The Hamiltonian of
such a system has the form

Ĥ = K̂ +
3∑

i<j=1

Vij = − 1

2m23
∇2
r23
− 1

2µ1
∇2
R1

+
3∑

i<j=1

ZiZj

rij
(1)

where rij are the relative coordinates of the particle pair(i, j), Rk are the coordinates
of particle k in respect to the centre of mass of the particle pair(i, j); Zi , mi (Z2 =
−1, m2 = 1, i = 1, 2, 3) are charge and mass of theith particle,mij = mimj/(mi + mj),
µk = mk(mi +mj)/(mi +mj +mk) (i 6= j 6= k 6= i) are the reduced masses.

Within the continuum-distorted-wave (CDW) approach, a solution of the three-body
Schr̈odinger equation is sought in the form

9−as = exp(ik23r23 + iK1R1)Fq(ν12, ζ12)Fe0(ν13, ζ13)F (r23,R1) (2)

where

Fq(ν, ζ ) = exp(−πν/2)0(1− iν)1F1(iν, 1,−iζ ) (3)

Fe0(ν, ζ ) = exp(−iν ln ζ )

νij = ZiZjmij

kij
ζij = kij ξij = kij rij + kijrij

(4)

are the quantum-mechanical and eikonal continuum distortion functions which are due to
interaction of the particle pairs(1, 2) and (1, 3) respectively;(kij ,Kk) are the momenta
which are canonically conjugate to the Jakobi coordinates(rij ,Rk). The distortion function
F satisfies the equation

(− 1
2∇

2
r23
− ik23(r12) · ∇r23 + V23− iv · ∇R1)F (r23,R1) = 0 (5)

where

k23(r12) = k23 + u12(r12) = k23− i∇r12 lnFq(ν12, ζ12) (6)

is the local relative momentum of the particle pair(2, 3) which is modified by interaction of
the particle pair(1, 2); v is the velocity of particle 1 (scattered ion) relative to the centre of
mass of the particle pair(2, 3). Hereafter, we neglect terms of order 1/m1,3� 1.
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Within the CDW method, the influence of interaction of the particle pair(1, 2) on the
motion of the particle pair(2, 3) is usually disregarded, i.e. one makes the so-called basic
approximation of the CDW method and putsk23(r12) ≡ k23 in equation (5). Then the
equation (5) has an explicit solution satisfying incoming boundary conditions,F(r23,R1) =
Fq(ν23, ζ23), and the wavefunction (2) can be written in the form factorized in interaction
of the particle pairs. Such a representation of the CDW function proves to be valid in the
asymptotic region�0 where all three particle pairs are well separated(r12 ∼ r23 ∼ r13� 1)
and the influence of a third particle on the relative motion of a particle pair can be neglected.
On the contrary, in the asymptotic region�23 where r23 � r12, the three-body operator
−iu12(r12) · ∇r23 in equation (5), which establishes a correlation between the relative motion
of the particle pairs(1, 2) and (2, 3), essentially modifies the distortion functionF and it
should be taken into account in constructing the wavefunction that satisfies proper boundary
conditions.

2.1. The eikonal approximation

Let us first examine the effects introduced by this three-body operator within the eikonal
approximation for which explicit formulae can be derived. Using the substitutionFe =
exp(i8e) and neglecting the quadratic kinetic energy operator in equation (5), we write the
equation for the phase function8e as

(k12(r12) · ∇r12 + v · ∇R1)8e(r12,R1) = −V23(r23) (7)

wherek12(r12) = k23(r12)− v = k12 + u12(r12).
Note that the momentum (6) is, in general, a complex vector. Hereafter, we will neglect

the imaginary part of the local momentum,k12(r12) ≡ Rek12(r12), which is proposed to be
an infinitesimal of second order. We write equations that define the characteristic trajectories
of motion in the form

ṙ12(t) = k12(r12(t))

Ṙ1(t) = v. (8)

Integrating equation (7) along the trajectory, we obtain

8e(r12,R1) = 8e0 −
∫ t

t0

dτ V23(r23(τ )) (9)

where8e0 = 8e(r12(t0),R1(t0)) is a value of the phase at an initial moment of timet0. The
integral in (9) determines a shift of the phase in the Coulomb fieldV23 calculated along the
trajectory which is curved by the interaction of the particle pair(1, 2). In calculating it is
assumed that the trajectory starts in a point(r12(t0),R1(t0)) at an initial momentt0, so that
it ends in the point(r12(t) = r12,R1(t) = R1) at time t . Let us divide the time interval
(t0, t) into N subintervals: (t0,t1), (t1, t2), . . . , (tN−1, tN = t) such that on an each time
interval (ti−1, ti), i = 1, . . . , N the changes of the relative momentum of the particle pair
(2, 3) can be neglected, i.e.k23(τ ) ' k23(ti) = const atτ ∈ (ti−1, ti). The curved part of
the trajectory on the interval(ti−1, ti) can then be approximated by a rectilinear segment of
the form:r23(τ ) = r23(ti−1) + k23(ti)(τ − ti−1) and the total phase shift summed over all the
rectilinear parts of the trajectory reads as

8e(r12,R1) = 8e0 +
N∑
i=1

(ϕc(k23(ti), r23(ti))− ϕc(k23(ti), r23(ti−1))) (10)

where

ϕc(k, r) = −Z2Z3

k
ln(kr + kr)
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is the Coulomb logarithmic phase. If we put the initial phase8e0 = ϕc(k23(t0), r23(t0)) and
consider thatr23(tN ) = r23, k23(tN ) = k23(r12), equation (10) can be rewritten in the form

8e(r12,R1) = ϕc(k23(r12), r23)−1ϕc (11)

where

1ϕc =
N∑
i=1

(ϕc(k23(ti), r23(ti−1))− ϕc(k23(ti−1), r23(ti−1))) (12)

represents an additional phase shift which is due to the momentum changes during the motion
along the broken trajectory consisting of straight-line segment paths. In the limitN → ∞,
the broken trajectory passes into a continuous one, and the summation in equation (12)—into
an integration along the trajectory:

1ϕc =
∫ t

t0

dτ k̇23(τ ) · ∇k23ϕc(k23(τ ), r23(τ )) (13)

where the derivative with respect to time is

k̇23(τ ) = (k12(r12(τ )) · ∇r12)k23(r12(τ )).

On the other hand, the functionϕc(k23(r12), r23) satisfies the equation (7) up to a remainder
term of the form

δϕc = ((k12(r12) · ∇r12)k23(r12) · ∇k23)ϕc(k23(r12), r23). (14)

It follows from (13), (14) that1ϕc =
∫ t
t0
δϕc dτ . Thus, we can conclude that a requirement

imposed on the remainder (14) to be locally small is a necessary condition and not a sufficient
one for that the functionϕc would be close to an exact solution of equation (7). In the general
case, for this it is necessary to require that the summed (12) or integral (13) contribution from
δϕc would be small. As follows from (14),δϕc is small if (k12(r12) · ∇r12)k23(r12) is small.
In the limit ξ12→∞, the real part of the local momentum (6) takes the asymptotic form

k23(r12) ' k23− ν12
r̂12 + k̂12

ξ12
(1 + cos(−ζ12 + 2ν12 ln ζ12− 2δc(ν12))) (15)

where δc(ν) = arg0(iν), r̂ = r/r. In view of (14), (15), bothu12(r12) and δϕc are
infinitesimals of the same order:u12(r12) = O(ξ−1

12 ), δϕc = O(ξ−1
12 ). Therefore, we can not

neglect a contribution from the integral term in (11). In order to obtain a correct asymptotic
solution,δϕc should be an infinitesimal of second order at least.

To this end, following Kunikeev and Senashenko (1996) we separate the contributions
from the waves that are and are not scattered in the wavefunction (2), namely we employ the
following expansion of the quantum-mechanical distortion function

Fq(ν, ζ ) = Fq0(ν, ζ ) + Fq1(ν, ζ ) (16)

where

Fq0(ν, ζ ) = exp(πν/2)G(iν, 1,−iζ ) (17)

Fq1(ν, ζ ) = iν exp(πν/2− 2iδc(ν)) exp(−iζ )G(1− iν, 1, iζ ). (18)

Here,G(a, c, z) is the confluent hypergeometric function that is irregular at the origin. The
termFq0(ν, ζ ), which makes the main contribution to the asymptotic behaviour ofFq(ν, ζ ) at
ζ →∞, represents particles which have not been rescattered, and the termFq1(ν, ζ ), which
is asymptotically proportional to the Coulomb two-particle scattering amplitude, describes
single collisions of a pair of particles. We note that all three functions in expansion (16)
are solutions of the same confluent hypergeometric equation, two of the three solutions being



Asymptotic expansions for three-body Coulomb scattering state 681

linearly independent. Therefore, we require that the unknown distortion functionsFj (r23,R1)

corresponding to the unscattered and scattered waves atj = 0, 1 satisfy equations of the form
(5) where one should replace

k23(r12)→ k
(j)

23 (r12) = k23 + u(j)12 (r12) = k23 +∇r128qj (ν12, ζ12). (19)

where8qj is the phase of the complex functionFqj .
All the formulae obtained above in the eikonal approximation can directly be generalized

in the case of a separate contribution from the waves that are scattered and are not scattered.
Thus, in the limitξ →∞, the local momenta (19) possess different asymptotic behaviour

k
(0)
23 (r12) = k23− ν12(r̂12 + k̂12)/ξ12

k
(1)
23 (r12) = v − k12r̂12 + ν12(r̂12 + k̂12)/ξ12.

(20)

Then, as follows from (14), (20),δϕcj = O(ξ−2
12 ) at j = 0, 1. Forδϕc1, for example, we have

δϕc1 ∼ (k(1)12 (r12) · ∇r12)k
(1)
23 (r12)

= (−k12r̂12 · ∇r12)(v − k12r̂12) + O(ξ−2
12 ) = O(ξ−2

12 ).

Thus, the functionϕcj = ϕc(k
(j)

23 (r12), r23) satisfies equation (7) with the local momentum
(19) neglecting infinitesimals of second order in the limitξ12 → ∞, i.e. it is an asymptotic
solution. If the variableξ12 is bounded or does not approach infinity rapidly enough, it is
necessary to regard an additional correction1ϕcj arising in summing (12) or integration (13)
of δϕcj along the curved trajectory.

2.2. Quasiclassical trajectories

Let us define the integral trajectories or rays corresponding to the waves that are and are not
scattered. If the second vector equation in a set of independent equations (8) gives straight-
line trajectories of the form:R1(t) = vt + b whereb is the vector impact parameter, the first
one defines trajectories of relative motion of the particles pair (1,2) distorted by the Coulomb
interaction between them and can be integrated in the parabolic coordinates:ξ12 = r12+k̂12·r12,
η12 = r12− k̂12 · r12 andϕ12 (azimuthal angle). These equations in parabolic coordinates take
the form

ξ̇ = 2kξ

ξ + η
pqj (ξ)

η̇ = − 2kη

ξ + η
ϕ̇ = 0

(21)

where

pqj (ξ) = 1 + 2
d

dζ
8qj (ν, ζ ) ζ = kξ j = 0, 1.

Hereafter, for convenience we omit subindexes 1, 2.
It follows from equation (21) that the trajectories lie in a half-plane:ϕ = ϕ0 = const, and

the trajectory equation has the form

η = C exp(−5qj (ξ)) (22)

where

5qj =
∫

dξ

ξpqj (ξ)
.
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Equation (22) at different values of integration constantC specifies a set of trajectories. The
constantC and the azimuthal angleϕ0 are chosen so that an integral curve passes through a
given pointr = (ξ, η, ϕ).

In the quasiclassical WKB approximation, the quantum-mechanical distortion functions,
Fqj (ν, ζ ), should be replaced by corresponding quasiclassical counterparts,

Fqj (ν, ζ )→ Fcj (ν, ζ ) = acj (ν, ζ )exp(i8cj (ν, ζ ))

which explicit forms in terms of elementary functions can be written as (Kunikeev and
Senashenko 1996)

8c0,1(ν, ζ ) = ζ

2

(
±
√

1− 4ν/ζ − 1
)
± ν ln

√
1− 4ν/ζ − 1√
1− 4ν/ζ + 1

(23)

and

ac0(ν, ζ ) = C0(ν)

√
1 +

1− 2ν/ζ√
1− 4ν/ζ

(24)

ac1(ν, ζ ) = C1(ν)
1

ζ
√

1− 4ν/ζ + (1− 2ν/ζ )
√

1− 4ν/ζ
(25)

where the integration constants

C0(ν) = 1√
2

exp(iν(1− ln(−ν)))

C1(ν) =
√

2ν
0(−iν)

0(iν)
exp(iν(−1 + ln(−ν)))

are chosen such that the WKB functions go over into the corresponding eikonal representations
Fe0,1(ν, ζ ) at ζ →∞.

Substituting the functions (23), we obtain the following quasiclassical expressions

5cj (ξ) = ±2
∫

dw

1− w2

w =
√

1− 4ν

ζ
.

(26)

Here, the upper (lower) sign on the right-hand side of the equation corresponds toj = 0(1) on
the left-hand side of the equation. In view of (22), (26), the following equation for quasiclassical
trajectories can be derived

η = C
∣∣∣∣w − 1

w + 1

∣∣∣∣±1

. (27)

For the unscattered (distorted plane) wave, equation (27) (upper sign) in the polar coordinates
(r, θ) takes the form

r = p

±1 + sin(θ ∓ θ0)/ sinθ0
(28)

where

p = kρ2
0

|ν| sinθ0 = |ν|/(kρ0)√
1 + ( ν

kρ0
)2

cosθ0 = 1√
1 + ( ν

kρ0
)2

0< θ0 <
π

2
.

Here, the upper (lower) sign corresponds toν < 0 (ν > 0). The constantC(ρ0) in (27) is
defined so thatr sinθ = √ξη = ρ → ρ0 = const> 0 atξ →∞ or θ → 0, whereρ0 is an
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Figure 1. Coulomb trajectories corresponding to the distorted plane wave (a) at asymptotic
momentumk = 1 and impact parametersρ0 = 2 and 4 au, calculated for the e− − p± collisions
in the WKB approximation, and the distorted spherical wave (b) at asymptotic momentumk = 1
and anglesθ0 = 3π/4 and 5π/8 specifying a direction of the trajectory asymptote.

impact parameter. Equation (28) at differentρ0 describes a set of hyperbolic trajectoriesr(θ)
with one of the asymptotes:ρ = ρ0 at θ = 0. Depending on the sign ofν, the arrangement
of the hyperboles relative to the Coulomb centre at the origin is qualitatively different (see
figure 1(a)).
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In the attractive field (ν < 0), the trajectories with an impact parameterρ0 and different
azimuthal angles at the range 06 ϕ0 < 2π converge to the focussing point,zf 0 = −p/2,
located on the negativez-axis l− = {(z, ρ) : z < 0, ρ = 0}. This axis, l−, is a set of
singular points in which a uniqueness condition for a solution of a set of equations (21) is not
fulfilled. In the focusing points, the quasiclassical amplitudes (24), (25) of both the scattered
and unscattered wave are singular:ac0,1 ∼ ξ−1/4. Continuously changing the parameters
ρ0 andϕ0, we obtain a three-dimensional space in which one and only one trajectory passes
through an each pointr /∈ l− (at ρ0 = 0 the hyperbolic trajectory reduces to a straight line
l+ = {(z, ρ) : z > 0, ρ = 0}). At ρ0→∞ and/ork→∞, a deflection of the trajectory from
a rectilinear line decreases because the focusing pointzf 0 = −(kρ0)

2/(2Z1)→−∞.
In contrast, in the repulsive field(ν > 0) the trajectories with an impact parameterρ0

and different azimuthal anglesϕ0 diverge, i.e. an effect of defocussing of particles occurs. A
particle moving from infinity along the hyperbolic divergent trajectory comes to the caustics
point (or the turning point) where the WKB approximation is inappropriate. The equation that
defines the points of caustics reads as

r = 4ν

k(1 + cosθ)
.

It follows that the trajectory with an impact parameterρ0 is tangent to the caustics line at point
(rc0, θc0) defined by

rc0 = 2ν

k

[
1 +

(
kρ0

2ν

)2
]

θc0 = arccos

(
1− ( kρ0

2ν )
2

1 + ( kρ0

2ν )
2

)
.

(29)

We note that equation (29) defines a turning point in respect toξ rather than to a radial
coordinate, i.e.rc0 6= rmin, θc0 6= θmin wherermin = p/(−1 + 1/ sinθ0) is the distance of the
closest approach to the Coulomb centre at the origin andθmin = π/2−θ0. As a consequence, at
that point, theξ -coordinate takes a minimum value,ξmin = 4ν/k. Moreover, the region of the
coordinate space whereξ < ξmin is classically inaccessible. In that region, the quasiclassical
local momentum and the corresponding trajectories become complex. In the points of caustics,
the quasiclassical amplitudes are singular:ac0,1 ∼ (ξ − ξmin)

−1/4. Thus, in both the focusing
points and turning points, the WKB approximation is not valid and the quantum-mechanical
approximation should be used near these points.

Substituting equation (28) into the second one of (21) and integrating it, we obtain an
equation that establishes a one-to-one dependence of the polar angleθ(t) upon time in moving
a particle along the trajectory

f±(θ) = − ν
2

kρ3
0

(t − t0) (30)

f±(θ) =
∫

dθ [∓1 + sin(θ ± θ0)/ sinθ0]−2

= − 2(tan(θ ± θ0)/2∓ sinθ0)/[cos2 θ0(tan(θ ± θ0)/2

∓(1 + cosθ0)/ sinθ0)(tan(θ ± θ0)/2∓ (1− cosθ0)/ sin0)]

± tan3 θ0 ln

∣∣∣∣sinθ0 tan(θ ± θ0)/2∓ (1− cosθ0)

sinθ0 tan(θ ± θ0)/2∓ (1 + cosθ0)

∣∣∣∣ .
Here, the±-signs in the functionsf+(θ), f−(θ) correspond toν > 0,ν < 0, respectively;t0 is
an initial moment of time (integration constant). Note the limiting cases: (i)f±(θ)→ −∞,
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t → ∞ asθ → 0; (ii) in the attractive field, the angle varies in the range 0< θ 6 π and
f−(θ) takes a finite value atθ = π ; (iii) in the repulsive field, 0< θ < θc0 andf+(θ) is finite
at θ → θc0.

Similarly, for the scattered (distorted spherical) wave, equation (27) (lower sign) in the
polar coordinates has the form

r = p

1− cos(θ − θ0/2)/ cos(θ0/2)

p = −ν
k

tan2(θ0/2).
(31)

Here, θ0 ∈ (0, π) is a polar angle that specifies a direction of the hyperbolic trajectory
asymptote:r(θ) → ∞ at θ → θ0. Depending on the sign ofν, the trajectory is arranged
in different sides from the asymptote line (see figure 1(b)). Thus, in the attractive field the
polar angle changes in the range fromθ0 to π . In addition, it appears that the trajectories
with a polar angleθ0 and different azimuthal anglesϕ0 converge to the focussing point,
zf 1 = p/2= ν

2k tan2(θ0/2) ∈ l−. In contrast, in the repulsive field the polar angle changes in
the intervalθc1 < θ < θ0 and the hyperbolic trajectory is tangent to the caustics line at point

rc1 = (2ν/k)(1 + 0.25 tan2(θ0/2))

θc1 = 2 arctan(0.5 tan(θ0/2)).
(32)

The dependence of the polar angle upon time can be established from the equation

fsc(θ) = − k2

ν tan3(θ0/2)
(t − t0) (33)

fsc(θ) =
∫

dθ [1− cos(θ − θ0/2)/ cos(θ0/2)]
−2

= − cot2(θ0/2)

cos2(θ0/4)

(
tan((θ − θ0/2)/2)

tan2((θ − θ0/2)/2)− tan2(θ0/4)

+
cos(θ0/2)

2 tan(θ0/4)
ln

∣∣∣∣ tan((θ − θ0/2)/2)− tan(θ0/4)

tan((θ − θ0/2)/2) + tan(θ0/4)

∣∣∣∣) .
Note the limiting cases. In the attractive fieldθ varies in the range(θ0, π ] and we obtain the
following behaviour in passing to the boundary points: (i) atθ → θ0 + 0, when a particle goes
to infinity along the trajectory asymptote,fsc(θ) → −∞, t → ∞ and (ii) in the focusing
point, fsc(π) is finite. In the repulsive fieldθ varies in the range(θc1, θ0) and we have the
following asymptotic behaviour near the boundaries: (i) in the turning point,fsc(θ) is finite
and (ii)fsc(θ)→∞, t →−∞ at θ → θ0 − 0 (on the asymptote).

2.3. Quantum-mechanical generalization

Let us generalize now the results obtained in the eikonal approximation in order to take into
consideration the effects related to the kinetic energy operator in equation (5). Formally
replacing the eikonal distorting factors by the corresponding quantum-mechanical factors

Fej = exp(iϕc(k
(j)

23 (r12), r23))→ Fq(ν
(j)

23 , ζ
(j)

23 )

gives the following generalization:

9−as = 9−0 +9−1 (34)

9−j = exp(ik23r23 + iK1R1)Fqj (ν12, ζ12)Fe(ν13, ζ13)Fq(ν
(j)

23 , ζ
(j)

23 ) (35)
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where

ν
(j)

23 =
Z2Z3m23

k
(j)

23 (r12)
ζ
(j)

23 = k(j)23 (r12)r23 + k(j)23 (r12)r23 j = 0, 1.

The quantum-mechanical distortion factorFq(ν
(j)

23 , ζ
(j)

23 ) is seen to satisfy equation (5) with
the local momentumk(j)23 up to the remainder

δFq(ν
(j)

23 , ζ
(j)

23 ) = ĥ(j)12Fq(ν
(j)

23 , ζ
(j)

23 )

where

ĥ
(j)

12 = − 1
2∇2

r12
−∇r23 · ∇r12 − ik(j)12 (r12) · ∇r12.

It follows in the limit ξ12→∞ thatδFq(ν
(0)
23 , ζ

(0)
23 ) = O(ξ−2

12 ) andδFq((ν
(1)
23 , ζ

(1)
23 ) = O(ξ−1

12 ).

Besides, considering thatFq0(ν12, ζ12) = O(1), Fq1(ν12, ζ12) = O(ξ−1
12 ) at ξ12 → ∞, as a

result we obtain that the function (35) is an asymptotic solution of the Schrödinger equation
in the region�23 up to the remainder termδ9−j = O(ξ−2

12 ).

If we setk(j)23 (r12) ≡ k23 in (35), then equations (34), (35) determine the CDW function.
Note that in the limitr12→∞ the unscattered part of the wavefunction,9−0 , goes over into
the corresponding part of the CDW function, while the scattered part,9−1 , does not do the
same sincek(1)23 (r12)|r12→∞ 6= k23. Thus, the main feature that distinguishes the function (35),
(36) from the CDW one consists in a modification of the electron momentum by the field of
the scattered ion. As follows from the asymptotic behaviour ofk

(0)
23 (r12), one can expect that

the most strong deviation from the CDW description will be exhibited in the kinematic region
wherek23 6 |ν12|. Moreover, the departure is expected to become more prominent as the
projectile charge increases. At the same time, for the scattered part of the wavefunction the
difference between the local and asymptotic momentum is seen to be proportional tok12 to
leading order and, hence, this part of the wavefunction will differ greater from the CDW one
with increasingk12.

Neglecting the second-order terms in the asymptotic region�23 wherer23� r12, R1, we
can also reduce the function (35) to the form given earlier by Kunikeev and Senashenko (1996)

9−j = ψ−kj (R1)
(r23) exp(iK1R1)Fqj (ν12, ζ12(R1))Fe(ν13, ζ13(R1))

ζ12(R1) = k12R1− k12R1 ζ13(R1) = k13R1 + k13R1
(36)

whereψ−kj (R1)
(r23) is the Coulomb wavefunction of an electron moving in the Coulomb field

of the residual ion with the local momentumkj (R1) = k23 + Reu(j)12 (−R1).
Both the function (35) and (36) are correct asymptotic solutions in the region�23

with the exception of the singular direction whereξ12 6 r23, i.e. wherer̂12 ' −k̂12 or
R̂1 ' k̂12. However, the function (35) seems to be more preferable because, in contrast to the
representation (36), it passes into the well known exact expression for the wavefunction of the
system of three particles, in which two particles are charged and a third one is neutral, when
the charge of one of the particlesZ1 orZ3→ 0.

Near the singular direction, the corresponding asymptotic wavefunction containing the
summed (12) or integral (13) correction terms to the phase can be used within the eikonal
approximation. To go beyond the eikonal approximation, it is desirable to make an extension
of the integration procedure along the broken quasiclassical trajectories which was used in
section 2.1. To facilitate the task, we suppose that the local momentum in (5) depends only on
time, i.e. we make an approximation,kj (r12) ' kj (−R1(t)) = kj (t), up to terms of O(R−2

1 ).
Then, the equation (5) can be rewritten in the form

(ĥ23− ikj (t) · ∇r − i∂t )Fj (r, t) = 0 (37)
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where

ĥ23 = − 1
2∇2

r + V23

denotes the two-body Hamiltonian. We choose a large enough moment of timet0 at which the
momentumkj (t) takes its asymptotic value and define the initial condition at that point:

Fj (r, t0) = Fkj (t0)(r) (38)

where the two-body Coulomb distortion functionFk(r) with momentumk is defined by (16).
Further, divide the time interval(t0, t) intoN subintervals such thatkj (t) ≈ kj (ti) on theith
interval(ti−1, ti), i = 1, . . . , N . Then, an approximate solution for (37) takes the form

F
(N)
j (r, t) = Û (N)(t, t0) Fkj (t0)(r) (39)

where the time-evolution operator

Û (N)(t, t0) = ÛN(tN , tN−1) . . . Ûi(ti , ti−1) . . . Û1(t1, t0) (40)

Ûi(ti , ti−1) = exp(−ikj (ti)r) exp(−i(ĥ23− k2
j (ti)/2)(ti − ti−1)) exp(ikj (ti)r) (41)

describes evolution of the system in moving along the broken trajectory provided that
Ûi(ti , ti−1) is a propagator on the time interval(ti−1, ti). One can see that the propagator
(41) is related to the two-body time-dependent Coulomb propagator for which an analytic,
although involved, formula is found by Blinder (1991). In principle the formulae (39)–(41)
give an analytic solution for the problem that generalizes the corresponding eikonal expressions.
However, their direct calculation is a formidable task since the determination of (39) requires
a 3N -dimensional integration. Using the spectral representation of the propagator in terms of
the complete set of eigenstatesψα of ĥ23, we can rewrite equation (39) as

F
(N)
j (r, t) = exp

(
− ikj (t) · r +

∫ t

t0

dτ k2
j (τ )/2

) ∑
αN ...α1

( N∏
i=1

aαiαi−1(ti , ti−1)

)
ψαN (r) (42)

where

aαiαi−1(ti , ti−1) = 〈ψαi | exp(i(kj (ti)− kj (ti−1))r)|ψαi−1〉 exp(−iεαi (ti − ti−1)). (43)

In deriving equation (42) the relation
∫ t
t0

dτ k2
j (τ )/2≈

∑N
i=1(

1
2)k

2
j (ti)(ti− ti−1)was used. The

first factor in (42) represents the Volkov–Keldysh state (Keldysh 1965) which describes the
motion of the unbound electron with definite value of momentum−k23 in the time-dependent
field Ej (t) = k̇j (t) produced by the projectile ion, while the second one is due to virtual
transitions of the active electron in a superposition of the target and projectile fields. Summing
in (42) is performed over discrete and continuum intermediate target statesψα1, . . . , ψαN (εαi
is the eigenenergy of the stateψαi , ψα0 = exp(ikj (t0)r)Fkj (t0)(r)) and these intermediate
contributions are induced by the stepped changes,1kj (ti) = kj (ti)−kj (ti−1), of the effective
momentumkj (t) when the state evolves from the initial moment of timet0 up to t . The
representation (42) can be referred to as anN -step (orN -order) asymptotic expansion of the
distortion functionFj into powers of small parameters|1kj (ti)| ≈ |k̇j (ti)| · |ti − ti−1| ∼
|Ej (ti)|. The bound-state contributions,F (N)Bj , to theN -step distortion function (42) can be
readily calculated since the transition matrix elements in the weighted coefficients (43) are
evaluated analytically for hydrogen-like bound states.

Within the one-step approximation of (42) the continuum-state contribution writes as

F
(1)
Cj (r, t1) =

∫
dp

(2π)3
exp(i(p2/2− k2

j (t1)/2)(t1− t0)) exp(−ikj (t1)r)|ψ−p 〉
×〈ψ−p | exp(ikj (t1)r

′)|Fkj (t0)(r′)〉. (44)
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One can estimate a contribution from intermediate Coulomb continuum statesψ−p in the
following way. If kj (t1) = kj (t0), the matrix element in (44) is seen to be aδ-function
δ(p−kj (t1))and the operator̂U1(t1, t0)does not change the initial function. Atkj (t1) 6= kj (t0),
the matrix element has aδ-like singularity∼ δ(p − kj (t1)) and near the singularity we can
approximateψ−p (r

′) ≈ exp(ipr′)Fkj (t1)(r
′) andεp ≈ k2

j (t1)/2 + (p − kj (t1)) · kj (t1) up to
terms of second order. Then, integration overp gives aδ-functionδ(r − r′ − kj (t1)(t1− t0))
and (44) takes the form

F
(1)
Cj (r, t1) ≈ Fkj (t1)(r)F ∗kj (t1)(r′)Fkj (t0)(r′)|r′=r−kj (t1)(t1−t0). (45)

Similarly, using the approximation (45) on the subsequent segments of path, we obtain

F
(N)
Cj (r, t) ≈

N∏
i=1

(Fkj (ti )(r(ti))F
∗
kj (ti )

(r(ti−1)))Fkj (t0)(r(t0))

= Fkj (t)(r)
N∏
i=1

(Fkj (ti−1)(r(ti−1))F
∗
kj (ti )

(r(ti−1))) (46)

wherer(tN = t) = r andr(ti) = r(ti−1) + kj (ti)(ti − ti−1) at i = 1, . . . , N . If we replace
Fk by the corresponding eikonal distortion function,F (e)k , equation (46) reduces to a phase
factor where the phase function is determined by equation (10) with local momentumkj (t).
Neglecting an additional phase shift which is due to the momentum changes during the motion
along the broken trajectory consisting of straight-line segments and replacing againF

(e)
k → Fk,

we arrive at the scattering state (Kunikeev and Senashenko 1996).

3. The ionization DDCS

We consider now the single ionization process

IZ1 +A(i)→ IZ1 +A+(f ) + e−(Ee, θe) (47)

where a heavy ionIZ1 of chargeZ1 hits an atomA(i), as a result of which one electron e−

(called active) is ionized while the other electrons (called passives) remain in the same state
during the collision.

In the entry channel, the initial state is proposed to be the boundary-corrected Born (B1B,
Dewangan and Eichler 1994) wavefunction. As an exact final state, we take the three-body
asymptotic wavefunction in the form (36). Then, the ionization DDCS as a function of the
active electron ejection angleθe and energyEe results in

d2σ

dEed�e
= ve

∫
d2bP(b) (48)

where the ionization probability,P(b), as a function of impact parameter vector is defined as

P(b) =
∣∣∣∣ ∫ ∞−∞ dt Af i(t, b)

∣∣∣∣2 (49)

Af i(t, b) = A0(t, b) +A1(t, b) (50)

Aj(t, b) = aj (R)F ∗qj (ν12, ζ12(R))F
∗
e0(ν13, ζ13(R)) exp(i(Ee − εi)t) (51)

aj (R) =
〈
ψ−kj (R)(r)

∣∣∣∣ −Z1

|r −R|
∣∣∣∣ϕi(r)〉 . (52)

Here,Aj(t, b) at j = 0, 1 determines a separate contribution to the total ionization amplitude
from the waves that are not and are rescattered by projectile ion, respectively;aj (R) is the
matrix element of ionization transition as a result of which an electron with momentumkj (R) is
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in the continuum;εi is the binding energy of the initial bound stateϕi , ve =
√

2Ee,R = b+vt .
Note that we could also substitute a more general form of the final-state wavefunction including
contributions due to changing of the local momentum in moving along the broken trajectories.
In this case, the general structure of the amplitudes (50), (51) was the same, but the ionization
matrix element (52) should be altered, namely,ψ−kj (R)(r) → exp(ikj (R)r)F

(N)
j (r, t) where

F
(N)
j (r, t) is defined by (42).

Expanding the Coulomb wavefunction and interaction potential in (52) into a partial wave
series and integrating over angular coordinates, we obtain the following partial wave expansion
of the matrix element

aj (R) =
∞∑
l=0

(−i)l exp(iδcl(kj ))fl(kj , R)Pl(k̂j · R̂). (53)

Here,δcl(k) is the Coulomb partial wave phase;fl(k, R) is the radial matrix element:

fl(k, R) = −4πZ1

∫ ∞
0
r2dr Rkl(r)

rl<

rl+1
>

ϕi(r) (54)

whereRkl(r) is the radial wavefunction of an electron moving in the Coulomb field of the
residual ion of chargeZ3 = 1 with momentumk and orbital momentuml; r< = r (r> = R)
if r < R or r< = R (r> = r) if r > R.

The radial integral (54) with the bound state wavefunctionϕi(r) = Nα exp(−αr), where
Nα is the normalization constant, can conveniently be represented as a sum of two terms

fl(k, R) = f asl (k, R) + f exp
l (k, R) (55)

where

f asl (k, R) = Cl(k)
2kl(2l + 1)!(α(l + 1) + νk)

(k2 + α2)l+2Rl+1
exp(2ν arctan(k/α)) (56)

f
exp
l (k, R) = −Cl(k)(kR)l

(
(2l + 1)I2l(k, R) +

2l+2∑
n=2

(2l + 2)!

(2l + 2− n)!Rn−1
I(n+1)l(k, R)

)
(57)

Inl(k, R) = (2l + 1)!

|0(l + 1− iν)|2
∫ 1

0
dt t l−iν(1− t)l+iν exp(−(α + ik − 2ikt)R)

(α + ik − 2ikt)n

Cl(k) = −4πZ1Nα
2l exp(−πν/2)|0(l + 1 + iν)|

(2l + 1)!
ν = −Z3/k.

(58)

The first term in expansion (55) determines an asymptotic behaviour offl(k, R) asR → ∞
since the second one decays as exp(−αR)/R. Thus, we can neglect a contribution of the
exponentially small integral term (57) at large enough values ofR > Rmax whereRmax is some
internuclear separation, whereas in the range 06 R < Rmax, both terms are values of the
same order and their contributions should be taken into account simultaneously. However, an
expansion of the form (55) turns out to be inconvenient for making a direct calculation of the
radial matrix element in the range 06 R < Rmax because both the asymptotic and integral
terms are singular asR→ 0 while their sum remains finite in the same limit. In order to obtain
an appropriate expression, we develop an exponential in the integrand of (58) as a series in
powers ofR. Then the integral overt can readily be evaluated and after collecting like terms
an expression forfl(k, R) can be derived in the closed form

fl(k, R) = Cl(k)(kR)l
[
(α + ik)−2

2F1

(
l + 1− iν, 2, 2l + 2,

2ik

α + ik

)
−(2l + 1)R2

∞∑
m=0

(−R)m
m!

(α + ik)m

(m + 2)(m + 2l + 3)
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Figure 2. The radial matrix element,fl(k, R), atk = 0.1 (a) andk = 1 (b) and different values of
l = 0, 1, 2 as a function ofR.

× 2F1

(
l + 1− iν,−m, 2l + 2,

2ik

α + ik

)]
(59)

where2F1(a, b, c, z) is the hypergeometric function.
As an example, we plotfl(k, R) at k = 0.1 (figure 2(a)) andk = 1 (figure 2(b)) and

different values ofl = 0, 1, 2 as a function ofR. One can see that the main contribution
to the asymptotic behaviour atR → ∞ gives the dipole wave (l = 1), whereas atR → 0
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the monopole wave (l = 0) contribution is leading. As momentumk increases, contributions
from the higher partial waves become more prominent. Note thatf asl=0(k, R) = 0 because
α = Z3 = 1 is chosen and the functionsRkl(r) andϕi(r) are orthogonal. Besides, we cannot
approximatefl(k, R) by f asl (k, R) in the range 06 R < Rmax(k, l) ' 5 because of a poor
agreement between them in that range.

Thus, we have reduced the problem to calculate the ionization DDCS with the final-state
wavefunction (36) to a three-dimensional integration (one integration over the time and two
integrations over the impact parameter and the azimuthal angle). Equations (48)–(59) make it
possible to investigate in detail the three-body effects due to the momentum modificationkj (R)

by the projectile field as well as the rescattering effects. Examples of such an investigation
can be found in (Kunikeev 1998b).

4. Summary and conclusions

The presented analysis of the three-body Coulomb continuum state clearly demonstrates that
in the asymptotic region�ij where two particles(i, j) are close to one another while a third
onek is far away from the pair the asymptotic state cannot be adequately reproduced in terms
of separate two-body subsystems since the momentum of the pair is modified by a long-
range Coulomb field of the third particle and thereby the interaction in one pair of particles is
transferred to another pair through the field-modified local momenta. The problem is examined
within the quasiclassical eikonal, WKB and quantum mechanical formalisms. It should be
clear, in particular, that the derived expressions for the eikonal phase factor (10) or for the
quantum-mechanical distortion function (42) incorporate intermediate contributions due to
changes of the local momentum in moving a particle from the asymptotic region along the
curved characteristic trajectories to the inner or reaction zone. Apparently, such an integral
information enables one to give a better account of the reaction zone. Moreover, some integral
conditions are formulated under which the intermediate contributions can be ignored.

The derived asymptotic scattering states can be used to treat a fragmentation process.
We have obtained analytical expressions (48)–(59) for the amplitude and the DDCS for
ionization of an atom by ion impact with the final-state wavefunction (36). The remaining
three-dimensional integral should be evaluated numerically.

In closing, we note that the above results obtained for the three-body Coulomb continuum
states can be extended to the bound-state problem, i.e. to the bound state of a target electron
in the field of an incident projectile ion (Kunikeev 1998a).
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