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Abstract. A wavefunction possessing the correct asymptotic behaviour in the region of
configuration space where two particles are only slightly separated and a third particle is located far
away is constructed within the quasiclassical eikonal, WKB and quantum-mechanical approach.
This function cannot be represented as a product of independent two-particle distortion functions
and in the limiting cases it passes into the continuum-distorted-wave (CDW) function and the
asymptotic state of Kunikeev and Senashenko (B396Phys.—JET82839). The derived function

gives a better account of the interaction zone and is used to investigate a fragmentation process.
As an application, the ionization process of an atom by ion impact is considered. The amplitude
and the double-differential cross section (DDCS) for the ionization process are developed. The
problem to calculate the DDCS is reduced to a three-dimensional integration.

1. Introduction

The description of the complicated quantum-mechanical dynamics of few charged particles
is one of the fundamental unsolved problems in atomic, molecular and nuclear physics. For
example, an adequate description of resonant or direct fragmentation processes involving
charged patrticles requires the knowledge of the final many-body scattering state both at finite
and infinite interparticle distances. However, our knowledge of the fragmentation dynamics
at finite interparticle distances is still scarce, in particular, if the strength of the different
interactions involved is of the same order and a perturbative approach is inappropriate.
Moreover, the behaviour in the inner or reaction zof2g,, where all particles are nearby,
depends on the asymptotic behaviour of the continuum state.

Asymptotic Coulombic states for the three-body scattering problem have been reported
in the region2o where all interparticle distances are large (Rosenberg 1973, Peterkop 1977,
Merkuriev 1977, Bellkd 1978, Brauneet al 1989). In this region particles can be regarded as
almost independent ones so that the wavefunction can be represented in factorized form as the
product of Coulomb two-particle distortion factors. On the contrary, in the asymptotic region
Q;; where two particlegi, j) are close to one another and a third partigeis located far
away from the paii # j # k # i = 1, 2, 3) this wavefunction has the wrong asymptotic
behaviour. Only recently (Alt and Mukhamedzhanov 1992, 1993, Kunikeev and Senashenko
(KS) 1996, Mukhamedzhanov and Lieber 1996, Kunikeev 1997, Kim and Zubarev 1997) have
asymptotic three-body scattering states been derived in the asymptotic r@gjofi$ius, Alt
and Mukhamedzhanov (1992, 1993) have obtained a zeroth-order wavefunction satisfying the
Schiddinger equation i;; up to terms of @1/ R?) whereR; is the distance between particle

Tt E-mail addresskunikeev@annai9.npi.msu.su

0305-4470/99/040677+16$19.50 © 1999 IOP Publishing Ltd 677



678 Sh D Kunikeev

k and the centre-of-mass of p&ir j). Later, the asymptotic wavefunction§r; that satisfies

the Schodinger equation up to terms of(@ R?) and contains the zeroth-order term and all

of the first-order @1/ R;) terms, was suggested in Kunikeev and Senashenko (1996). Similar
results were also obtained by Mukhamedzhanov and Lieber (1996) and further developed by
Kim and Zubarev (1997).

In this work we derive approximate analytical expressions for the solution of the non-
relativistic Schodinger equation of three charged particles that generalize the KS asymptotic
states. The study is restricted to a description of a light particle moving in the field of two
heavy particles. This enables us to separate out the interaction between heavy particles into
an individual factor with good accuracy. The derived wavefunction gives a better account of
the reaction zone and may be used in describing the ionization process. As an application,
we develop the amplitude and the double-differential cross section (DDCS) for the direct
ionization of an atom by ion impact. The atomic system of units is used throughout.

2. The three-body Coulomb continuum state

We consider the system of three charged particles: the ejected electron (particle 2) moving in
the combined field of the scattered ion (1) and the residual target ion (3). The Hamiltonian of
such a system has the form

1 1 3. Z:Z;
Vi - V% o+ it 1
oo i;:l rij W

3
I:I=I€+ZV,-J~:—
i<j=1

wherer;; are the relative coordinates of the particle p@irj), R, are the coordinates
of particle k in respect to the centre of mass of the particle gair); Z;, m; (Z, =
—1,mpy = 1,i =1, 2, 3) are charge and mass of thh particle,m;; = m;m;/(m; + m;),
wie =my(m; +mj)/(m; +m;+my) (i # j # k # i) are the reduced masses.

Within the continuum-distorted-wave (CDW) approach, a solution of the three-body
Schibdinger equation is sought in the form

2ma3

W = expikoaras + iK1 R1) F,(v12, $12) Feo(v13, $13) F (123, Ry) (2)
where
Fq(va {) = EX[X—JTU/Z)F(l - iU)]_Fj_(il), 1’ _IC) (3)
Fo(w, ) =exp(—iving)
Z,’Z i 4
V= Gij = kij&ij = kijrij + kijTij )
]

are the quantum-mechanical and eikonal continuum distortion functions which are due to
interaction of the particle pairgl, 2) and (1, 3) respectively;(k;;, K;) are the momenta
which are canonically conjugate to the Jakobi coordinétgs R,). The distortion function

F satisfies the equation

—3V2  —ikoa(r12) + Vi + Vaz — iv - V) F(r23, R1) =0 (5)

T23

where

k23(r12) = ks + u12(r12) = ko3 — iV, IN F,(v12, {12) (6)

is the local relative momentum of the particle pér 3) which is modified by interaction of
the particle pair(1, 2); v is the velocity of particle 1 (scattered ion) relative to the centre of
mass of the particle pai@, 3). Hereafter, we neglect terms of ordein; 3 <« 1.
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Within the CDW method, the influence of interaction of the particle p&ai2) on the
motion of the particle pai(2, 3) is usually disregarded, i.e. one makes the so-called basic
approximation of the CDW method and putss(r12) = ko3 in equation (5). Then the
equation (5) has an explicit solution satisfying incoming boundary conditib(s;s, R1) =
F,(v23, £23), and the wavefunction (2) can be written in the form factorized in interaction
of the particle pairs. Such a representation of the CDW function proves to be valid in the
asymptotic regiorf2o where all three particle pairs are well separatgag ~ rp3 ~ r13 > 1)
and the influence of a third particle on the relative motion of a particle pair can be neglected.
On the contrary, in the asymptotic regi®tps wherer,z < r12, the three-body operator
—iuga(r12) « Vo, in equation (5), which establishes a correlation between the relative motion
of the particle pairg1, 2) and (2, 3), essentially modifies the distortion functidn and it
should be taken into account in constructing the wavefunction that satisfies proper boundary
conditions.

2.1. The eikonal approximation

Let us first examine the effects introduced by this three-body operator within the eikonal
approximation for which explicit formulae can be derived. Using the substitution=
exp(i®,) and neglecting the quadratic kinetic energy operator in equation (5), we write the
equation for the phase functiab, as

(k12(r12) « Vi, T v - VR )P (r12, R1) = —Va3(r23) (7)
wherekiz(r12) = k23(r12) — v = k12 + u12(r12).
Note that the momentum (6) is, in general, a complex vector. Hereafter, we will neglect
the imaginary part of the local momentuky,(r12) = Rekia(r12), which is proposed to be
an infinitesimal of second order. We write equations that define the characteristic trajectories
of motion in the form

T12(1) = ka2(r12(1))

Ri(t) = v. (8)
Integrating equation (7) along the trajectory, we obtain
t
®,(r12, R1) = 0 — / dz Va3(r23(7)) )
fo

where®,.o = ®,(r12(t9), Ri(fo)) is a value of the phase at an initial moment of timeThe
integral in (9) determines a shift of the phase in the Coulomb fiidcalculated along the
trajectory which is curved by the interaction of the particle gair2). In calculating it is
assumed that the trajectory starts in a p@inb(zp), R1(fo)) at an initial momenty, so that

it ends in the poin{ri2(f) = r12, R1(t) = Ry) at timer. Let us divide the time interval
(to, 1) into N subintervals: (fo.t1), (t1,12), ..., (tn—1,tx = t) such that on an each time
interval (t;_1,%,), i = 1,..., N the changes of the relative momentum of the particle pair
(2, 3) can be neglected, i.&p3(t) ~ ka3(t;) = const att € (t;_1, ). The curved part of
the trajectory on the intervdl;_1, ¢;) can then be approximated by a rectilinear segment of
the form: rp3(t) = 7ro3(f;_1) + k23(t;) (t — t;_1) and the total phase shift summed over all the
rectilinear parts of the trajectory reads as

N
D, (r12, R1) = Po + Z(%(kizs(fi), 123(1)) — @ (ko3(t:), T23(ti—1)))  (10)
iz1

where

Z27
2k 3 Intkr + kr)

(pc(ks )= —
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is the Coulomb logarithmic phase. If we put the initial phdsg = ¢.(k23(t0), T23(f0)) and
consider thats(ty) = 723, k23(ty) = ka3(r12), equation (10) can be rewritten in the form

D, (r12, R1) = @ (k23(r12), T23) — A@, (11)
where
N
Ap. = Z(%(km(lf), 723(fi—1)) — @c(k23(ti—1), 23(t;-1))) (12)
i—1

represents an additional phase shift which is due to the momentum changes during the motion
along the broken trajectory consisting of straight-line segment paths. In theNimit oo,

the broken trajectory passes into a continuous one, and the summation in equation (12)—into
an integration along the trajectory:

Ag. = / At keaa(7) - Vi (kza(0), 123(0)) (13)

where the derivative with respect to time is

k23(t) = (k12(r12(7)) » Vi) k23(r1a(T)).

On the other hand, the functian (k23(r12), r23) satisfies the equation (7) up to a remainder
term of the form

3¢ = ((k12(r12) * Vi) k23(112) * Vi) @ (k23(T12), T23). (14)

It follows from (13), (14) thatAg, = ft; 3¢.dt. Thus, we can conclude that a requirement
imposed on the remainder (14) to be locally small is a necessary condition and not a sufficient
one for that the functiog, would be close to an exact solution of equation (7). In the general
case, for this it is necessary to require that the summed (12) or integral (13) contribution from
3¢, would be small. As follows from (14)8¢. is small if (k12(712) + Vi,)k23(r12) is small.
In the limit &1, — oo, the real part of the local momentum (6) takes the asymptotic form
k23(r12) > k23 — Vlz%zklz(l +C0S—C12+ 2v12IN 12 — 260(v12)))  (15)

where$.(v) = argl(iv), r = »/r. In view of (14), (15), bothuis(r12) ands¢. are
infinitesimals of the same ordeti >(r12) = O(él‘zl), S, = 0(51‘21). Therefore, we can not
neglect a contribution from the integral term in (11). In order to obtain a correct asymptotic
solution,§¢. should be an infinitesimal of second order at least.

To this end, following Kunikeev and Senashenko (1996) we separate the contributions
from the waves that are and are not scattered in the wavefunction (2), namely we employ the
following expansion of the quantum-mechanical distortion function

Fy(v,8) = Fyo(v, §) + Fju(v, ¢) (16)
where

Foo,¢) = expwv/2)G(iv, 1, —i¢) a7

Fa(v,¢) =ivexp(wv/2 — 2i6.(v)) exp(—ig)G(A —iv, 1,i¢). (18)

Here,G(a, ¢, z) is the confluent hypergeometric function that is irregular at the origin. The
term F,o(v, ¢), which makes the main contribution to the asymptotic behaviout, 6f, ¢) at

¢ — oo, represents particles which have not been rescattered, and th&gime), which

is asymptotically proportional to the Coulomb two-particle scattering amplitude, describes
single collisions of a pair of particles. We note that all three functions in expansion (16)
are solutions of the same confluent hypergeometric equation, two of the three solutions being
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linearly independent. Therefore, we require that the unknown distortion fundfignss, R1)
corresponding to the unscattered and scattered wayes &, 1 satisfy equations of the form
(5) where one should replace

ka3(rio) — k;jg,) (r12) = koz + u(ljz) (r12) = ko3 + V.., @, (v12, {12). (19)

whered,; is the phase of the complex functid); .

All the formulae obtained above in the eikonal approximation can directly be generalized
in the case of a separate contribution from the waves that are scattered and are not scattered.
Thus, in the limitt — oo, the local momenta (19) possess different asymptotic behaviour

k) (712) = ko3 — via(F12 + k12) /E12

@ . R ~ (20)
k53 (r12) = v — k1oT12 + v12(T12 + k12) /610

Then, as follows from (14), (203¢.; = O(gl‘zz) atj =0, 1. For§e.1, for example, we have

8¢e1 ~ (kY (712) - Vi) ks (112)
= (—k12F12 + Vi) (0 — k12f12) + O(ED) = OED).

Thus, the functionp,; = ¢.(kS} (r12), 723) satisfies equation (7) with the local momentum
(19) neglecting infinitesimals of second order in the lifiif — oo, i.e. it is an asymptotic
solution. If the variable€;, is bounded or does not approach infinity rapidly enough, it is
necessary to regard an additional correctiap; arising in summing (12) or integration (13)
of 8¢.; along the curved trajectory.

2.2. Quasiclassical trajectories

Let us define the integral trajectories or rays corresponding to the waves that are and are not
scattered. If the second vector equation in a set of independent equations (8) gives straight-
line trajectories of the formR;,(t) = vt + b whereb is the vector impact parameter, the first

one defines trajectories of relative motion of the particles pair (1,2) distorted by the Coulomb
interaction between them and can be integrated in the parabolic coordiﬂatesrlzﬂ%lz-rlg,

N12 = ri2 — ko112 andgs, (azimuthal angle). These equations in parabolic coordinates take
the form

. 2kE

f—mqu@)

= 2kn (21)
E+n

=0

where

d
qu(§)=1+2@¢’qj(v7 $) ¢ =k& j=01

Hereafter, for convenience we omit subindexes 1, 2.
It follows from equation (21) that the trajectories lie in a half-plapes ¢9 = const, and
the trajectory equation has the form

n = Cexp(—I1,;(§)) (22)
where

n ,_/ o
W) Epgi&)
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Equation (22) at different values of integration constargpecifies a set of trajectories. The
constantC and the azimuthal angle, are chosen so that an integral curve passes through a
given pointr = (&, n, ¢).

In the quasiclassical WKB approximation, the quantum-mechanical distortion functions,
F,;(v, ¢), should be replaced by corresponding quasiclassical counterparts,

qu(\}, é‘) g ch(vs ;) = acj(v» g-) exqiq)cj(vs é‘))

which explicit forms in terms of elementary functions can be written as (Kunikeev and
Senashenko 1996)

_ ¢ J1I-dvjr -1
CDC(),:L(U, é') = E (:t\/l—41)/§ — 1) :i:\)lnm (23)
and
. 1-2v/¢
aco(v, §) = Co(v), /1 + =t (24)
1
aa(v, ) = C1(v) (25)

cl—dvjr+(A—2v/0)yI=d]T

where the integration constants

1
Co(v) = —exp(iv(l — In(—v
o(v) NG paiv( (=v)))
I'(—iv)
=2
C1(v) = V2v )
are chosen such that the WKB functions go over into the corresponding eikonal representations

Feo1(v, ¢) atg — oo.
Substituting the functions (23), we obtain the following quasiclassical expressions
dw

;&) = iZ/ 12

4y (26)
w=_[1——.
V ¢

Here, the upper (lower) sign on the right-hand side of the equation correspohes@ol) on
the left-hand side of the equation. Inview of (22), (26), the following equation for quasiclassical
trajectories can be derived

expiv(—1 +In(—v)))

w—1*

w+1

For the unscattered (distorted plane) wave, equation (27) (upper sign) in the polar coordinates
(r, 0) takes the form

(27)

n==C

p

r= . . (28)
41 + sin(@ F 0y)/ Sinby

where

_ kog
vi

k 1
Ivl/ ko) coslp= ————  O<fp<=.

JLH ()2 1+(g)? 2

Here, the upper (lower) sign correspondsitec 0 (v > 0). The constanC (po) in (27) is
defined so that sind = \/é&n = p — pg = const> 0 até — oco or® — 0, wherepg is an

sinfy =
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Figure 1. Coulomb trajectories corresponding to the distorted plane wayeat(asymptotic
momentumk = 1 and impact parametes = 2 and 4 au, calculated for the e- p* collisions
in the WKB approximation, and the distorted spherical wajeaf asymptotic momenturi = 1

and angle®y = 37/4 and 5r/8 specifying a direction of the trajectory asymptote.

impact parameter. Equation (28) at differgptdescribes a set of hyperbolic trajectori€s)
with one of the asymptotes: = pg atd = 0. Depending on the sign of the arrangement

of the hyperboles relative to the Coulomb centre at the origin is qualitatively different (see

figure 1@)).
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In the attractive field{ < 0), the trajectories with an impact parameggrand different
azimuthal angles at the range<O¢o < 27 converge to the focussing point;o = —p/2,
located on the negativeaxis!- = {(z,p) : z < 0,p = 0}. This axis,/_, is a set of
singular points in which a uniqueness condition for a solution of a set of equations (21) is not
fulfilled. In the focusing points, the quasiclassical amplitudes (24), (25) of both the scattered
and unscattered wave are singulagp, ~ &Y%, Continuously changing the parameters
po andgg, we obtain a three-dimensional space in which one and only one trajectory passes
through an each point ¢ [_ (at oo = O the hyperbolic trajectory reduces to a straight line
Il ={(z,p) :z>0,p =0}). At pg — oo and/ork — oo, a deflection of the trajectory from
a rectilinear line decreases because the focusing paint —(kpo)?/(2Z1) — —o0.

In contrast, in the repulsive fieleh > 0) the trajectories with an impact parametgr
and different azimuthal angleg diverge, i.e. an effect of defocussing of particles occurs. A
particle moving from infinity along the hyperbolic divergent trajectory comes to the caustics
point (or the turning point) where the WKB approximation is inappropriate. The equation that
defines the points of caustics reads as

4y
" T kA +cow)
It follows that the trajectory with an impact paramepgiis tangent to the caustics line at point
(rc0, 6.0) defined by

2v k,o02
0= —|1+(=22
feo k|: (2v>

1— (k)2
6.0 = arcco % .
1+(52)?

We note that equation (29) defines a turning point in respeét tather than to a radial
coordinate, i.er.g # rmin, 6.0 # Omin Wherermin = p/(—1 + 1/ sin6p) is the distance of the
closest approach to the Coulomb centre at the origigapd= 7 /2—6,. As a consequence, at
that point, thet-coordinate takes a minimum valug,in = 4v/k. Moreover, the region of the
coordinate space wheée< &n, is classically inaccessible. In that region, the quasiclassical
local momentum and the corresponding trajectories become complex. In the points of caustics,
the quasiclassical amplitudes are singutag;; ~ (€ — &min) ~Y4. Thus, in both the focusing
points and turning points, the WKB approximation is not valid and the quantum-mechanical
approximation should be used near these points.

Substituting equation (28) into the second one of (21) and integrating it, we obtain an
equation that establishes a one-to-one dependence of the pola# @ngipon time in moving
a particle along the trajectory

2

v
f£0) = —%(Z — o) (30)

(29)

fr(0) = /de [F1 + sin@ =+ 6p)/ sinbp] 2

= — 2(tan(d = 6p)/2 F sinby) /[coS bo(tan( =+ 6p) /2

F(1 + costp)/ sinbo) (tan(® =+ 6p) /2 F (1 — cosbp)/ sinp)]
sinfp tan(® + 6p)/2 F (1 — coshy)
sinfgtan(é + 6p) /2 F (1 + coKy) |

Here, thet-signs in the functiong. (9), f—(0) correspondte > 0,v < 0, respectivelyto is
an initial moment of time (integration constant). Note the limiting casesf.({y) — —oc,

+tarf 6 In
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t — oo as — 0; (ii) in the attractive field, the angle varies in the range® < 7 and
f-(0) takes a finite value & = s; (iii) in the repulsive field, O< 6 < 6.0 and f+(0) is finite
atéd — 0O..

Similarly, for the scattered (distorted spherical) wave, equation (27) (lower sign) in the
polar coordinates has the form

_ p
"~ 1—cod6 — 6p/2)/ cog6p/2) (31)
v
P=—; tarf(6o/2).

Here, 6y € (0,7) is a polar angle that specifies a direction of the hyperbolic trajectory
asymptote:r(9) — oo atd — 6p. Depending on the sign of, the trajectory is arranged

in different sides from the asymptote line (see figue))L( Thus, in the attractive field the
polar angle changes in the range frégto 7. In addition, it appears that the trajectories
with a polar angledy and different azimuthal angleg, converge to the focussing point,
zp1=p/2=x tarf(6p/2) € I_. In contrast, in the repulsive field the polar angle changes in
the intervald,.; < 6 < 6y and the hyperbolic trajectory is tangent to the caustics line at point

re1 = (2v/k)(1 + 0.25tarf(6p/2))
6.1 = 2 arctarf0.5 tan(6y/2)).

The dependence of the polar angle upon time can be established from the equation
2

 vtar(6y/2) Che

(32)

fsa(e) = Z‘O) (33)

Sse(0) = /d9 [1 — cos® — 6p/2)/ cokbp/2)] 2
__ cof(6o/2) ( tan((6 — 60/2)/2)

coL(6o/4) \tart((0 — 60/2)/2) — tart(6o/4)
L Cos6o/2) | | tan((® — 60/2)/2) — tan(bo/4) D
2tan0o/4) | tan((0 — 6o/2)/2) +tanbo/4) |)

Note the limiting cases. In the attractive figldiaries in the rangé&y, 7] and we obtain the
following behaviour in passing to the boundary points: () ab 6o + 0, when a particle goes
to infinity along the trajectory asymptotg,.() — —oo, t — oo and (ii) in the focusing
point, f;.(r) is finite. In the repulsive field varies in the rang&d,, 6p) and we have the
following asymptotic behaviour near the boundaries: (i) in the turning pgjpt?) is finite
and (i) f;c(6) — oo, t — —oo atd — 6y — 0 (on the asymptote).

2.3. Quantum-mechanical generalization

Let us generalize now the results obtained in the eikonal approximation in order to take into
consideration the effects related to the kinetic energy operator in equation (5). Formally
replacing the eikonal distorting factors by the corresponding quantum-mechanical factors

Foj = explie (k33 (112), 123) — Fy (53, £33)

gives the following generalization:
Vo= Vy+¥, (34
U = explikasras + 1IK1R1) Fyj(vi2, §12) Fe(v1s, $13) Fy sy, ¢ (35)
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where
() _ ZLoZzmaz

3=
k53 (r12)

The quantum-mechanical distortion factey(vs5, ¢54) is seen to satisfy equation (5) with

the local momentum:;’s) up to the remainder

é“z(é) = kéé) (r12)raz+ k(zjg,) (r12)r23 j=01

(0] ) r(j ) G
‘SFq(sza)a 52% ) = hljz)Fq(sza ) fzé))
where
hg.]Z) = _%VZ - V7‘23 * vrlz - IkZ(I.IZ) (ri2) - Vf'lz'

r12
It follows in the limit&12 — oo thats F, (vse, £59) = O(£2) ands F, (vsy, ¢53) = O(EY).

Besides, considering thd,o(vi2, {12) = O(1), Fy1(vi2, {12) = O(é{zl) atép, — oo, as a
result we obtain that the function (35) is an asymptotic solution of thed@atger equation
in the region<2z3 up to the remainder tergW/;” = 0(51‘22).

If we setk(zg) (r12) = ko3 in (35), then equations (34), (35) determine the CDW function.
Note that in the limit;» — oo the unscattered part of the wavefunctidr,, goes over into
the corresponding part of the CDW function, while the scattered ggr{,does not do the
same sincé:él; (r12) |1 00 # k23. Thus, the main feature that distinguishes the function (35),
(36) from the CDW one consists in a modification of the electron momentum by the field of
the scattered ion. As follows from the asymptotic behaviom@f(rlg), one can expect that
the most strong deviation from the CDW description will be exhibited in the kinematic region
wherekys < |v12|. Moreover, the departure is expected to become more prominent as the
projectile charge increases. At the same time, for the scattered part of the wavefunction the
difference between the local and asymptotic momentum is seen to be proportiépatdo
leading order and, hence, this part of the wavefunction will differ greater from the CDW one
with increasingki,.

Neglecting the second-order terms in the asymptotic re@ignwhererys < r12, Ry, we
can also reduce the function (35) to the form given earlier by Kunikeev and Senashenko (1996)

VS =Yy (my (T23) eXPI K1 R1) Fyj(viz, £12(R1) Fe(v1s, $13(R1))
$12(Ry) = k1oRy — k12 Ry C13(R1) = kizRy + k13

Wherew,;(Rl) (ry3) is the Coulomb wavefunction of an electron moving in the Coulomb field

of the residual ion with the local momentum(Ry) = ka3 + Reu) (—Ry).

Both the function (35) and (36) are correct asymptotic solutions in the regign
with the exception of the singular direction whefg < rp3, i.e. wherer; >~ —kyp Or
R, ~ kq,. However, the function (35) seems to be more preferable because, in contrast to the
representation (36), it passes into the well known exact expression for the wavefunction of the
system of three particles, in which two particles are charged and a third one is neutral, when
the charge of one of the particl&s or Z; — O.

Near the singular direction, the corresponding asymptotic wavefunction containing the
summed (12) or integral (13) correction terms to the phase can be used within the eikonal
approximation. To go beyond the eikonal approximation, it is desirable to make an extension
of the integration procedure along the broken quasiclassical trajectories which was used in
section 2.1. To facilitate the task, we suppose that the local momentum in (5) depends only on
time, i.e. we make an approximatide;(ri2) =~ k;(—R1(t)) = k;(t), up to terms of (DRl‘z).

Then, the equation (5) can be rewritten in the form

(hys —ikj(t) - V. —i8,)F;(r, 1) =0 (37)

(36)
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where
» 192
haz = —3V,; + Va3

denotes the two-body Hamiltonian. We choose a large enough moment of tinehich the
momenturrk; (¢) takes its asymptotic value and define the initial condition at that point:

Fi(r, t0) = F; 1) (T) (38)

where the two-body Coulomb distortion functigl(r) with momentunk is defined by (16).
Further, divide the time intervaly, r) into N subintervals such that; () ~ k;(¢;) on theith

interval (t;_1,1,),i =1, ..., N. Then, an approximate solution for (37) takes the form
FM 1) = UM (1, 10) Fiy0) (7) (39)

where the time-evolution operator

UM (t,10) = Uy(tny ty-1) - .. Uilti, ;1) . .. Us(t1, 10) (40)

Ui(ti, t;1) = exp(—ik; (t;)r) exp(—i(has — k3(6:)/2)(t; — t;-1)) explik; (1:)r) (41)

describes evolution of the system in moving along the broken trajectory provided that
U,»(t,-, t;_1) is a propagator on the time intervé}_;, ;). One can see that the propagator
(41) is related to the two-body time-dependent Coulomb propagator for which an analytic,
although involved, formula is found by Blinder (1991). In principle the formulae (39)-(41)
give an analytic solution for the problem that generalizes the corresponding eikonal expressions.
However, their direct calculation is a formidable task since the determination of (39) requires
a 3N-dimensional integration. Using the spectral representation of the propagator in terms of
the complete set of eigenstatgs of ha3, We can rewrite equation (39) as

N
Z ( 1_[ Ao g (ti ) til)) 15”011\/ (’l") (42)

aN...01 i=1

F;N)(r, 1) = exp( — k(1) -7 +/ dr kf(f)/2>

where
Agya; iy 1) = (W, | €XPAI (K (1;) — kj(ti—))T) | Ve, ,) EXP(—i€q, (t; — 1i1)). (43)

In deriving equation (42) the relaticyﬁt0 dr kf(r)/z ~ Zf\'zl(%)kj?(ti)(ti —t,_1) was used. The
first factor in (42) represents the Volkov—Keldysh state (Keldysh 1965) which describes the
motion of the unbound electron with definite value of momentukys in the time-dependent
field E;(r) = k;(¢) produced by the projectile ion, while the second one is due to virtual
transitions of the active electron in a superposition of the target and projectile fields. Summing
in (42) is performed over discrete and continuum intermediate target gtates ., Vo, (€4
is the eigenenergy of the stafe, , V., = expik;(to)r) F, ) (1)) and these intermediate
contributions are induced by the stepped changés(s;) = k;(t;) — k;(t;_1), of the effective
momentumk; (1) when the state evolves from the initial moment of tirgeup tos. The
representation (42) can be referred to asvastep (orN-order) asymptotic expansion of the
distortion functionF; into powers of small parametefak;(s;)| ~ |k;)| - |t; — ti—1] ~
|E;(t;)]. The bound-state contributionEg}'), to the N-step distortion function (42) can be
readily calculated since the transition matrix elements in the weighted coefficients (43) are
evaluated analytically for hydrogen-like bound states.

Within the one-step approximation of (42) the continuum-state contribution writes as

d . .
FO 10 = [ s explir?/2= K1)/t~ 10) expt=iks (1)1 )

x (Y, | explik; (t)T")] Fi; 1) (1)) (44)
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One can estimate a contribution from intermediate Coulomb continuum stgtes the
following way. If k;(t1) = k;(t), the matrix element in (44) is seen to b&-dunction
8(p—k;(ty))andthe operatd?fl(tl, tp) does not change the initial function. Bf(r1) # k; (t0),
the matrix element has &like singularity~ §(p — k;(#1)) and near the singularity we can
approximatey,, (r') &~ expipr’) Fi, o) (") ande, ~ k%(11)/2 + (p — k;(11)) - k;(t1) up to
terms of second order. Then, integration op@ives as-functioné(r — v’ — k;(t1) (11 — o))
and (44) takes the form

1
Féj) (r,f) = Fi,a (T)Fljf(,l) (") Fie; 1) (") =k (1) (11— 10) (45)
Similarly, using the approximation (45) on the subsequent segments of path, we obtain

N
FE,0) 2 | [y (r@) F ) (r(ti-1)) Fi ) (7 (10))
i=1

N
= Fi,0 (™) [ [(Fiyo0 (i) ) (r(ti21))) (46)
i=1
wherer(ty = 1) = v andr(t;) = r(ti—1) + k) — -1 ati = 1,..., N. If we replace

F; by the corresponding eikonal distortion functidf’}ge), equation (46) reduces to a phase
factor where the phase function is determined by equation (10) with local moméntum
Neglecting an additional phase shift which is due to the momentum changes during the motion
along the broken trajectory consisting of straight-line segments and replacingﬂé"dam F,

we arrive at the scattering state (Kunikeev and Senashenko 1996).

3. The ionization DDCS

We consider now the single ionization process
12+ AG) — 17+ AT(f) +€ (E., 0,) (47)

where a heavy iod % of chargeZ; hits an atomA (i), as a result of which one electron e
(called active) is ionized while the other electrons (called passives) remain in the same state
during the collision.

In the entry channel, the initial state is proposed to be the boundary-corrected Born (B1B,
Dewangan and Eichler 1994) wavefunction. As an exact final state, we take the three-body
asymptotic wavefunction in the form (36). Then, the ionization DDCS as a function of the
active electron ejection angle and energye, results in

dc >

= P 4
o = v [ 0P (48)
where the ionization probability? (b), as a function of impact parameter vector is defined as
2

P(b) = ‘/w dr Ay (t, b) (49)
Asi(t,b) = Ao(t, b) + A1(t, b) (50)
Aj(t,b) = a;(R)F,;(v12, $12(R)) Fo(v13, C13(R)) €Xpi(Ee — €)1) (51)
a;(R) = <wk,® (7) ﬁ ¢ (r)>. (52)

Here,A;(z, b) at j = 0, 1 determines a separate contribution to the total ionization amplitude
from the waves that are not and are rescattered by projectile ion, respeciiveR); is the
matrix element of ionization transition as a result of which an electron with momeet(R) is
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in the continuumg; is the binding energy of the initial bound statev, = +/2E,, R = b+wt.

Note that we could also substitute a more general form of the final-state wavefunction including
contributions due to changing of the local momentum in moving along the broken trajectories.
In this case, the general structure of the amplitudes (50), (51) was the same, but the ionization
matrix element (52) should be altered, namely, , (r) — explik;(R)r)F{" (r, 1) where

F"(r, 1) is defined by (42).

Expanding the Coulomb wavefunction and interaction potential in (52) into a partial wave
series and integrating over angular coordinates, we obtain the following partial wave expansion
of the matrix element

aj(R) =Y (=) exp(isu (k) fik;, R)Pi(k; - R). (53)
=0

Here,d. (k) is the Coulomb partial wave phasg{k, R) is the radial matrix element:
[ee) 1

fitk, R) = —4n 2 / P2 Ri(r) () (54)

0
where Ry, (r) is the radial wavefunction of an electron moving in the Coulomb field of the
residual ion of charg€s; = 1 with momentunk and orbital momenturfi r. =r (r~ = R)
ifr<Rorr.=R(r-=r)ifr >R.

The radial integral (54) with the bound state wavefunctipr) = N, exp(—ar), where
N, is the normalization constant, can conveniently be represented as a sum of two terms

fitk, R) = f(k, R) + £7"(k, R) (55)
where
2k 21 + Dl (e + 1) + vk)

fP k. R) = Cy(k) (k2 + q2)*2Ri+1

exp(2v arctartk/«)) (56)

exp . & @+2)!
[k, Ry = —Ci(k)(kR) ((21 + DIk, R)+Y a2 tlek R)) (57)
n=2 :

@&+ Lo 1+iy EXP(— (o + ik — 2ikt)R)
) = g J, %00 S (58)
el :
il = —4n21Na2 exp(—mv/2)[T( +1+iv)| y— _Zu/k.

21+ 1!
The first term in expansion (55) determines an asymptotic behaviofit/afR) asR — oo
since the second one decays as(expR)/R. Thus, we can neglect a contribution of the
exponentially small integral term (57) at large enough valug® sf Rax WhereRaxis some
internuclear separation, whereas in the rangé ® < Rmax both terms are values of the
same order and their contributions should be taken into account simultaneously. However, an
expansion of the form (55) turns out to be inconvenient for making a direct calculation of the
radial matrix element in the rangeQ R < Rmax because both the asymptotic and integral
terms are singular @ — 0 while their sum remains finite in the same limit. In order to obtain
an appropriate expression, we develop an exponential in the integrand of (58) as a series in
powers ofR. Then the integral overcan readily be evaluated and after collecting like terms
an expression fof;(k, R) can be derived in the closed form

fik, R) = C;(k)(kR) |:(oz +ik) "% F, (z +1—iv,2, 2/ +2, ﬂ)
o+ik

LS (R @ik
—@+DR?) —o M2 (m+2+3)

m=0
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Figure 2. The radial matrix elementf; (k, R), atk = 0.1 (a) andk = 1 (b) and different values of
1 =0, 1, 2 as a function oR.

. 2ik
X2F1<l+1—|l),—m,21+2,a+ik>:| (59)

where, Fi(a, b, c, 7) is the hypergeometric function.
As an example, we plof;(k, R) atk = 0.1 (figure 2@)) andk = 1 (figure 2p¢)) and

different values of = 0, 1, 2 as a function ofR. One can see that the main contribution
to the asymptotic behaviour & — oo gives the dipole wavel (= 1), whereas aR — 0
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the monopole wavd (= 0) contribution is leading. As momentukrincreases, contributions
from the higher partial waves become more prominent. Note ffigtk, R) = O because
a = Z3 = 1is chosen and the functio®; (r) andg; (r) are orthogonal. Besides, we cannot
approximatef; (k, R) by f*(k, R) in the range O< R < Rmax(k,l) = 5 because of a poor
agreement between them in that range.

Thus, we have reduced the problem to calculate the ionization DDCS with the final-state
wavefunction (36) to a three-dimensional integration (one integration over the time and two
integrations over the impact parameter and the azimuthal angle). Equations (48)—(59) make it
possible to investigate in detail the three-body effects due to the momentum modificain
by the projectile field as well as the rescattering effects. Examples of such an investigation
can be found in (Kunikeev 1998b).

4. Summary and conclusions

The presented analysis of the three-body Coulomb continuum state clearly demonstrates that
in the asymptotic regio;; where two particlesi, j) are close to one another while a third
onek is far away from the pair the asymptotic state cannot be adequately reproduced in terms
of separate two-body subsystems since the momentum of the pair is modified by a long-
range Coulomb field of the third particle and thereby the interaction in one pair of particles is
transferred to another pair through the field-modified local momenta. The problem is examined
within the quasiclassical eikonal, WKB and quantum mechanical formalisms. It should be
clear, in particular, that the derived expressions for the eikonal phase factor (10) or for the
quantum-mechanical distortion function (42) incorporate intermediate contributions due to
changes of the local momentum in moving a particle from the asymptotic region along the
curved characteristic trajectories to the inner or reaction zone. Apparently, such an integral
information enables one to give a better account of the reaction zone. Moreover, some integral
conditions are formulated under which the intermediate contributions can be ignored.

The derived asymptotic scattering states can be used to treat a fragmentation process.
We have obtained analytical expressions (48)—(59) for the amplitude and the DDCS for
ionization of an atom by ion impact with the final-state wavefunction (36). The remaining
three-dimensional integral should be evaluated numerically.

In closing, we note that the above results obtained for the three-body Coulomb continuum
states can be extended to the bound-state problem, i.e. to the bound state of a target electron
in the field of an incident projectile ion (Kunikeev 1998a).
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